World’s First 1.3μm Wavelength Quantum Dot Laser Capable of Operating in High-Temperature Environments that Exceed 200°C

Demonstrates promising sensing applications essential to oil and gas exploration and operations in other high-temperature environments

Kanagawa and Tokyo, Japan, May 25, 2011 – QD Laser, Inc., Fujitsu Laboratories Limited, and the Institute for Nano Quantum Information Electronics, the University of Tokyo today announced the world’s first successful operation of a 1.3μm wavelength semiconductor laser at temperatures over 200°C. This was accomplished by utilizing quantum dots—nanometer-sized semiconductor artificial particles. By enabling a broader range of semiconductor laser applications, this technology shows promise for use in extremely high-temperature operating conditions, such as those encountered in oil and gas exploration.

Details of the technology will be presented at the European Conference on Lasers and Electro-Optics and the Quantum Electronics and Laser Science Conference (CLEO/Europe -EQEC 2011), held from May 22, 2011, in Munich, Germany. A portion of this research was funded by the Special Coordination Funds for Promoting Science and Technology, MEXT (Ministry of Education, Culture, Sports, Science and Technology).

Expanding beyond conventional optical communication and storage fields, recent years have seen semiconductor lasers utilized in a variety of industrial areas—even in extremely high temperature operations. The exploration of oil and gas resources is one such area. When drilling a deep well it is necessary to sense whether or not what is being drilled is actually oil. However, 1.3μm wavelength semiconductor lasers used for such sensing and other applications in exploration have been limited to operations at temperatures no higher than 175°C.

Quantum dot lasers—a type of semiconductor laser that apply quantum dots to light-emitting material—surpass conventional semiconductor lasers with cutting-edge characteristics. Achieving quantum dot laser operation at high temperatures requires having as many quantum dots as possible to contribute to the laser’s operation. This has consequently led to the issues of how to improve density and uniformity of quantum dots on light-emitting material.

The two types of technological advances that have enabled laser operation at high temperatures of...
over 200°C are as follows:

1. Improved density and uniformity of quantum dots
 Improvements to quantum dot crystal manufacturing technology have reduced the degree of quantum dot dispersion and enhanced uniformity at the high density level of 60 billion dots per 1 cm² (Figure 1).

 ![Figure 1: Conventional quantum dot dispersion (Left) and improved uniformity (Right)](image)

2. Quantum dot multiple stacking technology
 Stacking eight layers of these high-density and uniform quantum dots enables 1.3μm wavelength semiconductor lasers to be operated at high temperatures of over 200°C. Under repetitive operating conditions, tests confirmed usability of lasers at temperatures of up to 220°C, and over 2 mW of optical output was obtained even at 200°C (Figure 2).

 ![Figure 2: Current vs. optical output characteristics for quantum dot lasers](image)

Given their operability at high temperatures, quantum dot lasers present opportunities as semiconductor lasers that can be used in severe environments too hot for conventional semiconductor lasers. Based on this technological advance, QD Laser is moving forward on the commercialization of semiconductor lasers that can be operated in environments of up to 200°C.

QD Laser will exhibit its products at LASER World of PHOTONICS in Munich, Germany (Booth # B1-310), held from May 23–26, 2011. Featured products will include its high-temperature laser QLF1335-AD, a 1.3μm wavelength semiconductor laser capable of operating in environments of up to
150°C, which makes it suitable for future automotive data communications and resource exploration.

Press and Customer Contacts
QD Laser, Inc.
Sales & Marketing, Michel Usami / Yoshi Ouchi
E-mail: info@qdlaser.com Web site: www.qdlaser.com

Press Contacts
Fujitsu Limited
Public and Investor Relations Division

About QD Laser, Inc.
Founded in April 2006 with capital founded by Fujitsu Limited & MVC Corporation, currently “Mitsui & Co. Global Investment Ltd.”, with headquarters located in Kanagawa, Japan. QD Laser, Inc. is a technology leader in the field of semiconductor optical devices including quantum dot lasers, based on more than ten years of research collaboration between Fujitsu Laboratories Ltd. and the University of Tokyo in Japan.
For more information: www.qdlaser.com

About Fujitsu Laboratories
Founded in 1968 as a wholly owned subsidiary of Fujitsu Limited, Fujitsu Laboratories Limited is one of the premier research centers in the world. With a global network of laboratories in Japan, China, the United States and Europe, the organization conducts a wide range of basic and applied research in the areas of Next-generation Services, Computer Servers, Networks, Electronic Devices and Advanced Materials.

About the University of Tokyo (UT)
Established in 1877 as the first national university in Japan. As a leading research university, the University of Tokyo offers courses in essentially all academic disciplines at both undergraduate and graduate levels and conducts research across the full spectrum of academic activity. And also, The university established the Institute for Nano Quantum Information Electronics (NanoQuine) in October 2006. This is a cross-department organization for the purpose of realizing technical innovation in future advanced electronics based on nanoscience, nanotechnologies, and information science as well as promoting young researchers.
For more information about NanoQuine: http://www.nanoquine.iis.u-tokyo.ac.jp/index-e.html

All company or product names mentioned herein are trademarks or registered trademarks of their respective owners. Information provided in this press release is accurate at time of publication and is subject to change without advance notice.